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Abstract 

 
Conservation measures involve planned management to protect the Earth’s biodiversity around the world, 

thus preventing exploitation, destruction, or neglect of a natural resource.  Satellite data from remote sensing 
systems offer valuable information to ecologists for studying diversity patterns.  The term ‘satellite 
biomodelling’ implies the development of models for biological interests, while integrating remotely sensed 
data.  This paper explores how recent advances in spatial and spectral resolutions of satellite sensors can 
contribute to studying aspects of biodiversity, as well as discussing advantages and challenges of adopting 
such technologies for conservation management.  A case study is also presented, developing a spatial 
regression model for predicting global plant diversity based on the Normalised Difference Vegetation Index 
(NDVI) derived from satellite data, while integrating other biophysical and environmental parameters 
(temperature, precipitation, and topography).  This paper demonstrates that remote sensing data can offer 
valuable information about diversity patterns and has the potential to become an effective tool in 
conservation and biodiversity evaluation. 
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1. Introduction 

 
The term biodiversity is defined as the variability among living organisms from all sources, including 

inter alia, terrestrial, marine and other aquatic ecosystems (CBD 1992).  As rates of habitat and species 
destruction continue to rise, the need for conserving biodiversity has become increasingly imperative during 
the last decade (Wilson 1988, Kondratyev 1998).  In order to design meaningful conservation strategies, 
there exists an urgent need to map and monitor species richness and distributions, as an important aspect of 
conservation and land use planning (Sala et al. 2000).   

A first step recommended by the Convention on Biological Diversity (CBD) to prevent loss of 
biodiversity is the implementation of “a system for identifying and monitoring components of biological 
diversity, along with processes that significantly threaten its conservation” (CBD 1992).  Comprehensive 
information on the distribution of species is required for designing effective conservation management 
strategies.  However, ground-based surveying techniques developed by conservation biologists have 
traditionally been used to assess plant species richness and composition, which is difficult to implement 
logistically and financially at regional scales.  Remote sensing (RS) technologies and the launch of many 
new satellite systems have made available an unprecedented number of tools with which to address such 
challenges (Soule and Kohm 1989, Lubchenco et al. 1991, Stoms and Estes 1993). 

This paper critically evaluates the potential of RS technologies for developing a regional vegetation 
biodiversity mapping and monitoring system.  The term ‘biodiversity’ is restricted to its most commonly 
used form, i.e. species diversity (Stoms and Estes 1993).  The challenge of mapping and monitoring plant 
diversity is discussed in the following section, while direct and indirect methods of assessing plant species 
distributions are compared in the second section.  In the third section, specific recommendations are made on 
how to apply such technologies for large-scale assessment of plant biodiversity.  Finally, a case study of 
work in progress is presented with the purpose of developing a model for predicting global plant diversity 
based on satellite and climatic data. 

 
2. The Importance and Challenge of Mapping Plant Diversity 

 
Plant diversity is a major part of total biodiversity, as it forms the basis of all food webs and underpins the 

functioning of all ecosystems (Nagendra 2001).  However, in order to know how to protect or conserve a 
plant species or assemblage of species, we must attain knowledge of where these species occur and to what 
extent they are distributed.  Geographic variation in species richness (number of species in a particular area) 
is one of the most conspicuous patterns in biodiversity (Lennon et al. 2004).  Cross-taxon relationships in 



 

species richness have led many conservation biologists to using species diversity of certain taxa as indicators 
of species diversity of other taxa (Pearson and Carroll 1999, Myers et al. 2000, Moore et al. 2003).  
Important questions in conservation biology now include whether species diversities of different groups of 
organisms are correlated and, in particular, whether plant diversity influences animal diversity.  Studies have 
shown that the well-investigated vascular plants are comparatively well-suited to serve as indicator groups in 
terrestrial habitats (Gould 2000). 

Relatively few studies have been carried out to survey species numbers of vascular plants on continental 
and global scales.  The first world map of the species numbers of vascular plants was published by Barthlott 
et al. (1996), locating six diversity maxima occurring in the tropical/subtropical zones.  Kier et al. (2005) 
produced the first global map of vascular plant species richness by ecoregions, identifying the Borneo 
Lowlands and Central and South America as species richness ‘hotspots’.  Such broad-scale biodiversity 
mapping projects have highlighted the challenges of using traditional methods of inventorying and assessing 
biodiversity and the possible advantages of integrating RS data for detection, mapping, and monitoring. 

 
3. Remote Sensing Approaches for Assessing Plant Species Distributions 

 
The potential benefits of using satellite RS to assess and monitor plant diversity were suggested by 

researchers over a decade ago (Soule and Kohm 1989, Noss 1990, Roughgarden et al. 1991, Lubchenco et al. 
1991).  Much of the available literature on RS applications for mapping and monitoring aspects of 
biodiversity reveal certain commonalities.  Chief among these is the unique ability of satellite imagery to 
synoptically monitor large areas in a timely systematic and repeatable manner (Stoms and Estes 1993).  The 
use of RS to quantify or model biodiversity components can be categorised into ‘direct’ and ‘indirect’ 
approaches (Table 1). 

 
3.1 Direct remote sensing of species and species assemblages 

 
Direct approaches are considered a first-order analysis of species occurrence, mapping the composition, 

abundance, and distribution of individual species or assemblages of species (Turner et al. 2003).  In 
terrestrial applications, such direct observations are typically limited to the detection of larger plants (e.g. 
trees), or in open areas where crops, shrubs or lichens form a spatially contiguous layer of vegetation 
(Nagendra 2001). 
 
Table 1. Summary of indicators of plant biodiversity that are mapped directly or indirectly by RS 

approaches. 
 

Direct Approaches Indirect Approaches

Land cover classification Climate (i.e. precipitation, temperature, soil moisture)
Species composition Topography

Primary productivity (i.e. chlorophyll, fPAR)
Habitat structure (i.e.vertical canopy structure)

 
 
At sub-metre spatial resolutions, direct identification of certain tree species is feasible through the 

detection of individual tree crowns.  High resolution satellites, IKONOS and Quickbird offer multispectral 
imagery at resolutions of 4 m and 2.4 m, respectively, and panchromatic imagery at 1 m and 0.6 m, 
respectively (GeoEye 2006).  Digital aerial photography likewise provides access to high spatial resolution, 
often as fine as 0.5 m (King 1995).  However, even with fairly large plants, the spatial resolution required for 
identification is fairly high.  For example, Biging et al. (1995) attempted to discriminate tree species using 
Landsat imagery, concluding that pixel sizes of 0.5 m were not sufficient for assigning individual tree 
crowns to species.  However, ‘ideal’ pixel size will obviously depend upon the size of tree crowns, which 
can vary widely within as well as between species.   

In tandem with increases in spatial resolution, gains in spectral resolution have offered new possibilities 
for direct remote sensing of biodiversity patterns, especially from the use of airborne and spaceborne 
hyperspectral sensors.  Hyperspectral sensors measure reflected radiation as a series of narrow and 
contiguous wavelength bands, typically at 10 to 20 nm intervals including 200 or more spectral bands.  
Acquired spectral signatures are compared to spectral libraries, which enable improved landcover 



 

classification (Gould 2000).  One application of hyperspectral imagery is the detection and mapping of 
invasive species.  Research conducted in the Theodore Roosevelt National Park of North Dakota, USA 
successfully detected infestations of leafy spurge Euphorbia esula, using three hyperspectral sensors (Kokaly 
et al. 2002).  The Hyperion instrument achieved mapping accuracies of up to 80%, but was unable to resolve 
infestations <500 m2 or mixed pixels with <35% leafy spurge.  Another study by Goodwin et al. (2005) 
utilised 0.8 m CASI-2 imagery to assess the capacity of spectrally discriminating individual species in a 
native eucalypt forest in Australia.  Results indicated that the two species were sufficiently spectrally and 
structurally distinct to allow for mapping of individual crowns and species. 

 
3.2 Indirect detection through remote sensing of environmental parameters 

 
Indirect approaches use RS imagery to measure environmental variables or indicators that are known or 

believed to influence aspects of biodiversity (Turner et al. 2003).  In practice, this is the most common 
approach of assessing plant biodiversity using RS data.  It provides quantifiable elements that can be readily 
and repeatedly obtained and statistically related to species richness and distributions (Gontier et al. 2006).  
To examine the variety of indirect indicators used to assess plant diversity, four categories are identified in 
Table 1.  These include climate, topography, vegetation productivity or function, and habitat suitability with 
respect to its spatial arrangement and structure. 

In general, temperature and moisture (i.e. annual precipitation and evaporation) are two variables most 
often utilised in climatic analyses (Sarr et al. 2005).  A review by Rosenzweig (1995) also identified 
elevation as a key biodiversity gradient when determining the diversity and distribution of plant species.  In 
the tropics, species diversity of many plants exhibited unimodal distributions with respect to elevation, with 
the highest species diversity occurring at mid-elevations.  Elevation has also been correlated with levels of 
productivity.  A study by Whittaker and Niering (1975) in the Santa Catlina Mountains of Arizona, USA 
found a steeper decrease in productivity from high-elevation forests to mid-elevation woodlands, along with 
a less steep decrease from dry woodlands through desert grassland into desert.  It becomes evident that 
various species richness-elevation patterns exist, although some may be influenced by the size of the area 
sampled (Rahbek 1997). 

The nature of the relationship between vegetation primary productivity and species richness remains 
contentious.  Most studies have found that species richness tends to increase linearly with productivity, 
suggesting that higher productivity levels lead to higher energy availability and a greater number of species 
and larger populations (Berry and Roderick 2002, Running et al. 2004).  Using RS data, vegetation 
production can be assessed through relationships with standing biomass or foliage vigour, such as prediction 
of leaf area index (LAI), tree volume or biomass, or photosynthesis through the fraction of light absorbed by 
the vegetation (fPAR). 

Vegetation indices and derivatives such as LAI and fPAR, facilitate the investigation of relationships 
between ground-based measures of species richness and satellite-based measures of vegetation productivity 
and function.  Waring et al. (2006) utilised NDVI data over the continental USA to predict woody species 
richness, as measured using the USDA Forest Service Forest Inventory data, finding significant relationships 
between total species numbers at the ecosystem level and maximum annual NDVI.  At regional levels, 
moderately strong correlations have been established between plant species richness and NDVI using 
AVHRR data in California, with the accuracy of results dependent on the season and species characteristics 
(Walker et al. 1992). 

While climate and productivity have been linked to global patterns of plant diversity (Willig et al. 2003, 
Hawkins et al. 2003), finer-scale spatial patterns such as land use and land cover, forest structural stage and 
their associated spatial patterns are increasingly being investigated as potential predictors of species diversity 
and abundance (Fahrig 2003).  In forested environments, vertical structural complexity has been linked with 
forest biodiversity and RS technologies have become increasingly successful at mapping and monitoring 
such spatial structures (Hansen et al. 1991, Imhoff et al. 1997).  Lidar technology has been successfully 
applied to estimating elements of forest structure that were traditionally assessed by empirical techniques 
(Wulder 1998, Lim et al. 2003).  Capabilities include estimating vegetation density at different heights 
throughout the canopy, tree or stand height characteristics, canopy closure, volume, and LAI. 
 
4. Recommendations for a Vegetation Biodiversity Mapping and Monitoring System 

 
Understanding regional/mesoscale patterns of ecosystem properties is imperative if we are to effectively 

monitor ecosystem change due to land use and climate change.  Understanding regional/mesoscale 



 

biodiversity patterns is important, as it is a scale at which land use management decisions are made (Kareiva 
1993, Stoms 1994, Bengtsson et al. 1997).  It was shown previously that there are a variety of direct and 
indirect approaches to map and monitor biodiversity using RS.  The purpose of this section is to introduce 
recommendations that are transferable for regional or national vegetation biodiversity monitoring systems. 

This paper suggests that there are several key considerations when designing and developing a system for 
assessing and monitoring biodiversity using RS.  First, such large area monitoring schemes should be 
comprehensive or cover as much of the geographic area as possible.  The system should also be as complete 
as possible in characterising the vegetated terrestrial biosphere, considering both upperstorey and 
understorey species.  Third, a monitoring system should have two initial foci, (a) an assessment of the 
current vegetative biodiversity across the region, and (b) a monitoring component to assess changes over 
time.  Fourth, a monitoring system should utilise a range of available RS datasets available for the region, 
rather than focusing on one dataset or sensor alone.  Finally, results from the system should be scalable – 
information should not only be available at regional/national scales, but also accessible at the local level.  
Programmes investigating vegetation biodiversity should be encouraged across a range of habitat and 
ecosystem types, such as forests, wetlands, agricultural lands, and marine and coastal habitats. 

There is an increasing trend in the wealth of new RS data (i.e. rainfall, cloud cover, soil types), which 
enhance or replace information currently used to monitor and predict species distributions.  The challenge 
now exists on what to do with all of this available data – how to analyse or utilise it for management 
purposes.  Five types of analyses are suggested here that can potentially be used for conservation priority-
setting and examining acquired RS data. 

The first step suggested for any regional vegetation monitoring and mapping system is to assess the 
conservation status of areas within a given geographic unit.  Persistence value analyses identify areas that 
are likely to have a high level of species richness that will persist over time (Turner et al. 2003).  Threat 
analyses may involve predictive models using RS data, integrating information on human land use patterns, 
demographics, and infrastructure to assess future impacts on species and habitats.  Such analyses are 
important when considering the form, timing, and sequence of conservation initiatives, as well as the level of 
effort required.  Representation analyses consider the full range of plant species richness in an area in terms 
of habitat blocks (Duro et al. 2007).  RS may assist in identifying which areas support the largest and most 
viable populations of target species or estimating which habitat blocks have the resources or conditions to 
support such species.  Other potential analyses include gap analysis and conservation feasibility analyses, 
which could utilise RS data for identifying conservation priorities, while considering political, socio-
economic, and cultural factors (Duro et al. 2007). 

It becomes evident that any broad-scale vegetation biodiversity monitoring framework that encompasses 
a range of plant species, the mapping of indirect estimates of diversity provides the most realistic, flexible, 
and cost-effective approach.  Should such an approach be adopted, this paper suggests focusing on four 
primary measures: climate and topography, vegetation function/production, habitat spatial 
arrangement/structure, and change detection.  Monitoring these key measures through time at a regional level 
has the potential to provide an ‘early warning system’, highlighting high prioritisation areas. 

In Section 3.2, climate and topography were identified as key biodiversity gradients when determining the 
distribution of plant species.  Inclusion of information about elevation and climatic variables has been shown 
to improve RS landcover classification accuracies (Franklin and Peddle 1989), particularly in mountainous 
terrain.  Elumnoh and Shrestha (2000) incorporated digital terrain information into classification of 13 plant 
species and classification accuracy improved 7%, particularly when discriminating lowland and highland 
vegetation.  There also exists a strong link between vegetation productivity and species richness.  Utilising 
RS generated estimates of fPAR could provide critical information for identifying vegetation.  In particular, 
the MODIS sensor provides fPAR data on a monthly basis that could be used to better understand changes in 
vegetation habitat and production, especially for seasonal species. 

 A measure of habitat spatial arrangement/structure is recommended here for monitoring and mapping, 
referring to the heterogeneous nature of landcover or the degree of landscape or habitat fragmentation.  Patch 
size, distribution, dispersion of patch types, contrast among patches, patch shape complexity, 
contagion/clumping, and corridors between patches are structural components of the landscape that can be 
easily quantified from RS imagery (McGarigal and Marks 1995, Urban 2005).   

Change detection is the final measure recommended, stressing the importance of monitoring a site over 
time.  This facilitates monitoring and predicting trends in the distribution of species and species assemblages 
in response to environmental changes (climate change, fire, floods), human impacts (roads, urban sprawl), 
and other disturbances.  Disturbance indices have been developed utilising MODIS data that have 



 

successfully detected vegetation vigour and changes in disturbance conditions across Canada (Mildrexler et 
al. 2007). 
 
5. Case Study:  Adopting a Spatial Econometric Approach for Predicting Global Plant Diversity 
 

Biodiversity mapping methods have been based on two basic approaches: (a) a taxon based approach, and 
(b) the inventory based approach (Kier et al. 2005).  In a taxon based approach, the diversity map is the 
result of overlaying data on the individual taxa.  In contrast, the inventory based approach, which has been 
used to produce global maps of the species numbers of vascular plants, is based on summary data for 
geographical units, such as total species or family numbers in a region.  After standardisation of taxon 
numbers of regions of different sizes to a defined area size, diversity maps can be created in a rather short 
time and the centres of diversity can be delineated.  Since the data structure is often strongly determined by 
political units, it is necessary to adjust the boundaries of diversity zones by superimposing the data with 
vegetation maps and datasets on physical geofactors.  A GIS-based approach can be useful in order to reach a 
complete standardisation and reproducibility of the methodology for multiple datasets. 

The world map of species richness of vascular plants presented by Mutke and Barthlott (2005) was 
generated with the inventory-based methodology (Figure 1).  This work was produced by using more than 
3,270 species richness figures for more than 2,460 different operational geographical units, such as countries, 
provinces, mountains, islands, national parks, and others collected on a global scale.  The final map was 
interpolated on the basis of GIS layers of the suitable geographical units and additional data on vegetation, 
climate, topography, and other parameters. 
 

 
 
Figure 1. World map of species richness of vascular plants after Mutke and Barthlott (2005). 

 
However, most methods that attempt to model or predict plant distributions based on environmental or 

climatic factors tend to ignore the spatial properties inherent to the phenomena that is being measured.  If 
spatial autocorrelation is ignored, the model will systematically overestimate the observed values in some 
regions, while underestimating the observed values in other regions (Anselin 2002).  Spatial autocorrelation 
exists when the value at any point in space is dependent on values in surrounding or neighbouring 
geographic units.  That is, the spatial arrangement of values is not random.  The presence of spatial 
autocorrelation in the residuals can be diagnosed by calculation of the Moran’s I test statistic.  If the presence 
of spatial autocorrelation in the residuals is significant, this means that the confidence limits are unrealistic 
(Anselin 2002).  The presence of spatial autocorrelation would bias the correlation coefficient and OLS 
regression estimators and the precision of parameter estimates would be overestimated as the information 
content of the sample would be less than implied by classical theory (Messner and Anselin 2004).  Spatial 
autocorrelation analysis enables us to assess the correlation of a variable (i.e. plant species richness) in 
reference to the spatial location of the variable. 

The research in progress introduced in this paper involves developing a model for predicting global plant 
diversity based on satellite data.  A spatial econometric approach is adopted by developing a spatial 
regression model predicting global plant diversity based on the Normalised Difference Vegetation Index 
(NDVI) derived from satellite data.  The model also integrates selected biophysical parameters, namely 
temperature, precipitation, and elevation. 

When estimating a spatial regression model that controls for spatial effects, the model can take the form 
of either a spatial lag model or a spatial error model (Anselin 2002).  A spatial lag model implies that the 



 

geographic clustering of plant diversity is due to the influence of plant diversity in one place on plant 
diversity in another (neighbourhood effects).  This model is consistent with some kind of diffusion, 
interaction, or clustering process (Mardia and Marshall 1984).  In contrast, a spatial error model indicates 
that clustering reflects the influence of unmeasured variables.  Spatial error model specification is usually 
applied when other independent variables may be statistically significant but are excluded from the model 
specification (Anselin 2002). 
 
Table 2. Diagnostics for spatial dependence for global plant diversity based on NDVI, temperature, 

precipitation, and elevation as independent variables.  Five test statistics for spatial 
dependence in the residuals of the OLS model are shown. 

 

Spatial Dependence        
Diagnostic Test

Value P-value

Moran's I (error) 4.658 0.00000
LM-Lag 13.535 0.00023
LM-Error 18.166 0.00002
Robust LM-Lag 3.701 0.05237
Robust LM-Error 8.332 0.00390

 
 
To determine the most appropriate model specification, diagnostics for spatial dependence were 

conducted, which included tests against spatial autocorrelation.  Five test statistics for spatial dependence are 
shown in Table 2.  The Moran’s I test statistic proved to be highly significant (P < 0.00000), indicating the 
presence of spatial autocorrelation.  However, as noted by Anselin (2002), while the Moran’s I statistic has 
great power in detecting misspecifications in the model, it is less helpful in suggesting which model 
specification (i.e. spatial lag or spatial error) should be used.  To this end, the Lagrange Multiplier test 
statistics may be used, which test for a missing spatially lagged dependent variable (LM-Lag) or error 
dependence (LM-Error) in order to guide the specification search.   

In this analysis of modelling global NDVI, the resulting simple LM-Lag and LM-Error test statistics were 
both highly significant (P < 0.001), providing further evidence of spatial dependence.  As a result, it was 
necessary to consider the robust forms of the statistics.  The spatial regression model matching the more 
significant test statistic was estimated, since both Robust test statistics proved to be not significant to a 
certain degree.  The Robust LM (lag) test statistic (P = 0.054) proved to be less significant than the Robust 
LM (error) statistic (P = 0.004).  Therefore, the spatial error model was considered to be the most appropriate 
spatial regression specification for global plant diversity based on NDVI and climatic dependent variables. 

The research presented here is work in progress and the model estimation results are not shown here.  
However, the model estimation results are expected to show which independent variables (NDVI, 
temperature, precipitation, elevation) have the most effect on the spatial distribution of global plant diversity.  
This research demonstrates the utility of remote sensing and climatic data in predicting global plant diversity.  
Findings are expected to support the use of remote sensing vegetation products as a potentially effective tool 
when predicting plant diversity patterns, which can be useful in conservation and biodiversity evaluation. 

 
6. Conclusion 

 
International agreements, such as the CBD, require countries to establish a means of inventorying and 

monitoring elements of biodiversity, and the processes that may impact them.  However, conventional field-
based techniques continue to dominate the mainstay of biodiversity research, although they are costly and 
often logistically difficult to conduct over large areas.  This paper has shown that the launch of new satellite 
systems has provided an unprecedented number of RS tools to address such challenges. 
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