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Abstract 
 
This article presents methods to estimate a land cover transition matrix based on maps from two 
points in time. The land cover transition matrix indicates the amount of land that transitions from 
each category at time 1 to each category at time 2. Observed differences between the two land 
cover maps can be due to change on the ground or error in the maps. If the maps were perfectly 
correct, then the observed differences would indicate true land transition on the ground. This 
paper considers the situation when the maps are not correct, and a confusion matrix indicates the 
structure of the errors in each map. For situations where formal confusion matrices are not 
available, we perform sensitivity analysis to show how the suspected error in the maps influences 
the estimates of the land cover transitions. We illustrate the technique using land cover data from 
1971 and 1999 in the Plum Island Ecosystems of Northeastern Massachusetts, which is a Long 
Term Ecological Research site of the National Science Foundation. If the maps were perfectly 
correct, then the transition from forest to residential would account for 6% of the study area. Our 
method shows that if each category were to have a user’s accuracy of 85 percent, then this 
transition would account for 7% of the study area, and could range from 4% to 8% depending on 
the assumptions concerning the distribution of errors in the maps. The method also produces 
maps that show the probability of any particular land cover transition, given the observed data 
and the confusion matrix. 
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1 Introduction 
Land change and map error are two factors that lead to observed differences between two maps of 
the same extent for two different points in time. Researchers are becoming increasingly interested 
in assessing the accuracy of maps, because maps that are integrated into a GIS database may 
show a large number of erroneous changes, since error at either date can give a false impression 
of change (Khorram 1999, Lunetta and Elvidge 1999, Foody 2002, Yang and Lo 2002, Liu and 
Zhou 2004, Mas 2005). If we simply ignore the error, then we risk having inaccurate estimates 
for the amount of change on the land as expressed by a land transition matrix. A confusion matrix 
is a common method to express map accuracy, but such information does not exist in many 
situations. Therefore, this paper addresses two questions: 1) How do we estimate the land 
transition matrix when we have two maps and their confusion matrices? 2) How do we estimate 
the land transition matrix when we have two maps but do not have their confusion matrices? 
 
2 Methods 
This article illustrates the methods with a case study of the Plum Island Ecosystems (PIE) site in 
northeastern Massachusetts, USA, which is part of the National Science Foundation’s Long Term 
Ecological Research program. There exist raster maps for 1971 and 1999 for four categories: 
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Forest, Residential, Open and Other. Each pixel at the 30-meter resolution has full membership to 
exactly one of the four categories. There does not exist information concerning the accuracy of 
these maps. 

The top number in each cell of table 1 shows the observed differences between the maps 
of 1971 and 1999 summarized in the form of a transition matrix. This remainder of this methods 
section describes how to compute the other three entries in each cell of table 1 based on various 
assumptions about possible errors in the maps. 
 
Table 1. Transition matrices for the PIE case study. Matrix D is the top row in each cell, U is the 
second row, M is the third row, L is the bottom row. All entries express percent of the study area. 

 
 

Figure 1 illustrates the logic of the method to estimate the transition matrix. “Map Time 
1” and “Map Time 2” are the maps of 1971 and 1999 respectively for the case study. Matrix D 
shows the observed correspondence between the maps in the format of table 1, where agreement 
is on the diagonal and difference is off the diagonal. If the maps were perfectly accurate, then 
matrix D would express the transitions on the ground, since matrix D summarizes the direct 
overlay of the map from time 1 on the map from time 2. However, the purpose of this paper is to 
estimate the transition matrix for the case where the maps have errors. Therefore, we need to 
know the structure of the errors in the maps. C1 and C2 express these errors in the form of 
confusion matrices where the rows show the categories in the maps and the columns show the 
same categories for some type of validation information, such as ground information. The entries 
in matrices C1 and C2 are the user’s conditional probabilities, meaning that the entry in row i and 
column k of matrix Ct is the probability that a pixel is category k in truth at time t, given that the 
map shows it as category i at time t. Our method combines information from matrices D, C1 and 
C2 to estimate the land transitions, expressed by the matrix at the bottom of figure 1. 
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Figure 1. Logic of methods showing flows of information from matrices D, C1,and C2 to M. 
 

We consider three different methods to estimate the land transition matrix based on the 
overlay of the maps from times 1 and 2. All three methods are based in part on an assumption that 
the accuracy of the resulting overlaid land change classification is equal to the accuracy obtained 
by multiplying the accuracies of each individual classification (Mas 1999, Stow 1999, Fuller et al. 
2003). The first method applies this assumption to all of the pixels in the study area and produces 
matrix M. The second method applies the multiplication assumption to only the pixels that show 
disagreement between times 1 and 2, while it assumes no error in the pixels that show persistence 
over time. This second method estimates the land transitions in a matrix denoted as L, which is 
designed to offer a lower bound on the estimated change. The third method applies the 
multiplication assumption to only the pixels that show agreement between times 1 and 2, while it 
assumes no error in the pixels that show difference over time. This third method produces matrix 
U, which is designed to offer an upper bound on the estimated land change. 

Ideally, the confusion matrices would derive from an empirically-based independent 
accuracy assessment, however it is common that information about map accuracy does not exist. 
For this situation, we apply sensitivity analysis concerning a range for plausible accuracies to 
consider a variety of possibilities for matrices C1 and C2. In our case study, this range is from 
0.85 to 1.00 in terms of proportion correct. For any particular selection of the overall accuracy, 
we generate an entire confusion matrix. We do this by setting the assumed overall accuracy equal 
to the user’s accuracy for each category, meaning that each of the diagonal entries in the 
confusion matrix is set equal to the assumed overall proportion correct. Then the remaining 
overall proportion incorrect is distributed equally among the off-diagonal entries within each row 
of the confusion matrix to give the same commission error for each category (Pontius and Lippitt 
2006). For example, if the assumed overall accuracy of the map is 0.85, then 0.85 is the value for 
each diagonal entry in the confusion matrix. The resulting implied proportion incorrect of 0.15 is 
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distributed equally among the other categories in each row of the confusion matrix. In our case 
study that has three other categories, all off-diagonal entries in the confusion matrices are 0.05. 

All of the mathematical notation and equations are given and explained below: 
t ≡ time such that t = 1 or t = 2, 
i ≡ index for a category in a map, 
j ≡ index for a category in a map, 
k ≡ index for a category in truth, 
J ≡ number of categories in the study area, 
dij ≡ entry in row i and column j of matrix D that gives the percent of the study area that is 

classified as category i in the time 1 map and classified as category j in the time 2 map, 
ctik ≡ entry in row i and column k of the confusion matrix for time t denoted Ct, which gives the 

conditional probability that a pixel in truth at time t is category k, given that the map at time 
t shows it as category i, 

At ≡ assumed user’s accuracy of all categories in the confusion matrix, which appears on all 
diagonal entries in matrix Ct for cases where ground information is not available, 

Ft ≡ value of off-diagonal entries in matrix Ct when assumed user’s accuracy is At, 
D ≡ J-by-J difference matrix that shows categories of the time 1 map in the rows and categories 

of the time 2 map in the columns in terms of percent of the study area,  
Ct ≡ J-by-J confusion matrix that shows categories of the map at time t in the rows and categories 

of truth at time t in the columns in terms of probabilities, 
Vti ≡ 1-by-J row vector that is row i of the confusion matrix Ct, which gives is the probability of 

a pixel being category k at time t in truth, given that it is category i at time t in the map, 
Hij ≡ J-by-J matrix where each entry is the probability that a pixel transitions in truth from the 

category in the row to the category in the column, given that the empirical maps show 
category i at time 1 and category j at time 2, 

Eij ≡ J-by-J matrix where the entry in row i column j is one and all other entries are zero. 
M ≡ J-by-J transition matrix that gives the middle estimate for the percent of the study area that 

transitions from the category in the row to the category in the column, 
L ≡ J-by-J transition matrix that gives the lower estimate for the percent of the study area that 

transitions from the category in the row to the category in the column, 
U ≡ J-by-J transition matrix that gives the upper estimate for the percent of the study area that 

transitions from the category in the row to the category in the column, 
The following equations hold: 
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Matrix Ct is the J-by-J confusion matrix for time t, where its J rows are J vectors, each 
denoted as Vti. The superscript T on Vti means the transpose of vector V1i, which converts it 
from a row vector to a column vector. Therefore matrix algebra produces matrix Hij as a J-by-J 
matrix, and there are J2 such matrices. The design of matrix Hij indicates that if a pixel is 
category i in the map of time 1 and category j in the map of time 2, then c1ix multiplied by c2jy is 
the probability that the pixel transitioned in truth from category x at time 1 to category y at time 2. 
Therefore, the entries of matrix Hij give the conditional probability that a pixel transitioned in 
truth from the category in its row to the category in its column, given that the maps show that the 
pixel transitioned from category i to category j. Consequently, all the entries in each matrix Hij 
sum to one.  

Matrix M is a weighted average of all such J2 matrices, where each Hij is weighted by 
the percent of the particular observed transition in the study area, given by entries dij in D. 
Matrices L and U are similar to matrix M, in the respect that they estimate the land transitions, 
albeit with different assumptions concerning which pixels have errors. Matrix L assumes that 
error exists only in the pixels that show difference between the maps of times 1 and 2, whereas 
matrix U assumes that error exists only in the pixels that show persistence over time. Equation 5 
computes L as a weighted sum of Eii to reflect the pixels that show agreement, plus a weighted 
sum of Hij to reflect the pixels that show disagreement for which i ≠ j. Equation 6 computes U as 
a weighted sum of Hii to reflect the pixels that show agreement, plus a weighted sum of Eij to 
reflect the pixels that show disagreement. 

 
Figure 2. PIE maps showing: (a) observed Boolean transition from Forest to Residential on the 
left, and (b) probability of transition from Forest to Residential on the right. 
 
Matrix Hij can be used to produce a map that shows the probability of any particular transition, 
given the overlay of the maps from times 1 and 2. Figure 2a shows the apparent transition from 
Forest to Residential in black and all other areas in white, based on a simple overlay. We use the 
J2 entries in matrix Hij to convert each pixel in the overlaid map into a probability of transition 
from Forest to Residential. Figure 2b shows the spatial distribution of the probability of this 
transition expressed as a percent from 0 to 100. Figure 2b reflects the information in Hij that was 
based on an assumed user’s accuracy of At = 0.85, where i = the index for Forest and j = the index 
for Residential. 
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Figure 3. Sensitivity of estimated percent of study area that transitions from Forest to Residential 
as a function of percent correct in maps of time 1 and 2. Figure 3a at top gives middle estimate; 
figure 3b at bottom left gives lower estimate; figure 3c at bottom right gives upper estimate. 

 
Figure 3 illustrates the type of information we can obtain by applying sensitivity analysis 

to the parameters A1 and A2. All three plots have the same axes. The z-axis is the estimated 
transition from Forest to Residential expressed as percent of the study area. The x-axis is the 
assumed accuracy of the map of time 1, i.e. A1, ranging from 85 to 100 percent correct. Similarly, 
the y-axis is the assumed accuracy of the map of time 2, i.e. A2. Matrix M is the basis of the top 
figure 3a; matrix L is the basis of the bottom left figure 3b; matrix U is the basis of the bottom 
right figure 3c. When accuracy is 100 percent, the surfaces for matrices M, L, and U intersect at a 
single point, which is the amount of the transition given in matrix D. The surface for matrix M is 
between the lower surface of matrix L and the upper surface of matrix U. 
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3 Results 
Table 1 gives the four types of estimated transition matrices assuming 85 percent accuracy for 
both maps. Figure 2 shows the implications visually for the transition from Forest to Residential. 
Darker shading represents higher probability of a transition from Forest to Residential. Figure 3 
shows the results of the sensitivity analysis for the transition from Forest to Residential for 
accuracies ranging from 85 to 100 percent for both maps. If the maps were perfectly correct, then 
they would indicate that 6 percent of the study area transitioned from Forest to Residential 
between 1971 and 1999. If the user’s accuracy were 0.85 for each category in both maps, then the 
transition from Forest to Residential would be 7 percent based on the middle estimate, 5 percent 
based on the lower estimate, and 9 percent based on the upper estimate. 
 
4 Discussion 
The proposed method is based on simplifying assumptions, just as all types of analysis are. First, 
it describes the map error in the form of a confusion matrix, which lacks information about 
possible spatial dependencies in the errors. Next, the technique applies a single user’s accuracy to 
all categories in each confusion matrix. Then, equation 2 applies an identical probability of 
confusion with each of the other categories within each row of the confusion matrices. 
Furthermore, equation 3 assumes that the errors in the map of time 1 are distributed 
independently from the errors in the map of time 2, which implies no temporal dependence. 
These assumptions about the distribution of error are unlikely to match exactly the real error 
structure in the maps in at least four respects. First, it is likely that there is some spatial 
dependence in the errors, since some regions of the study area are likely to be more difficult to 
classify than others. Second, it is common for some categories to be more accurate than other 
categories. Third, some categories are more likely to be more confused with similar categories 
than with dissimilar categories (Rogan and Chen 2003). Fourth, if spatial dependence among the 
errors persists over time, then it is likely to cause temporal dependence in the errors. 

Other investigators have approached this problem with methods that rely on either 
detailed information about the error structure (van Oort 2005, 2007) or computationally intensive 
simulation methods (Burnicki et al. 2007). These other approaches can be helpful to illustrate the 
possible range of effects that various assumptions can have on the estimates of land change, but 
they require either more information than is typically available or additional assumptions 
concerning the details of the distributions of the errors in the maps. In this paper, we have 
intentionally taken an approach that is mathematically and conceptually simpler than other 
proposed approaches, because we intend for our approach to be as intellectually accessible as 
possible, in spite of the fact that proper interpretation of the results still requires careful attention. 
 
5 Conclusions 
This article proposes methods: 1) to produce three types of land transition matrices based on the 
comparison of two possibly erroneous maps over time, 2) to generate maps of the probability of 
any particular land transition, and 3) to perform sensitivity analysis concerning a range of 
plausible levels of map accuracies. The methods are based on simplifying assumptions that allow 
us to express the calculations in six equations. The procedure has been designed for either the 
case where there exist confusion matrices that express the accuracy of the maps or the case where 
there does not exist information concerning map accuracy. This procedure offers scientists an 
alternative to ignoring potential error in maps when comparing maps that share a categorical 
variable. 
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